
Java for IOI



Java vs C++

Advantages

• Very good IDE support

• Powerful debugger and 
exception system

• Quick documentation

• Zero pointer shenanigans

Disadvantages

• Verbose

• Slower than C++

• Garbage collection overhead

• No/difficult low-level control



How Java works (and why you should care)

• A native program – the JVM – starts up and reads your compiled Java 
program

• The JVM has 2 jobs:
• Recompile the Java bytecode into native machine code (JIT)

• Perform maintenance tasks in the background (mostly memory management)



Java’s design

• Designed for enterprise – very formal and flexible

• Everything is classes and objects

• There are no pointers

• For speed in Java:
• Avoid creating new objects (when we really don’t need to)

• Avoid ‘disposing’ objects (when we really don’t need to)



Strings are immutable

• Don’t append to Strings in a loop – this creates a new String every 
time

• Use StringBuilder



Avoid the ‘primitive wrappers’

• Integer, Double, etc. instead of int, double

• 1 instance per value*!

• But… generics can only use primitive wrapper classes
• Use arrays of primitives, or make your own data structures if really necessary

• array > ArrayList > LinkedList



I/O in Java

• Do not use Scanner!

• Use BufferedReader

• And use StringTokeniser for multiple lines
• .split() is about 2x slower

• And then Integer.parseInt() or double.parseDouble() etc. to convert 
the Strings

• For output, System.out.print() works fine (buffered internally)



Other notes

• Check out the methods in the primitive classes
• Integer, Double, Collections, Arrays

• Various utilities for sorting, type conversions, etc.

• Implement ‘comparable’ in your classes for easy sorting

• Keep everything in one file
• Append ‘static’ to everything

• Don’t use packages

• You can use inner classes

• Don’t use exceptions for logic


